Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fei Nie

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail: nie-fei@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.099$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis(5-chloro-2-formylphenolato- $\kappa^{2} O, O^{\prime}$)cobalt(II)

In the mononuclear title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Co}^{\mathrm{II}}$ atom is six-coordinated by four O atoms from two 5chlorosalicylaldehyde ligands and two O atoms from two coordinated water molecules in a slightly distorted octahedral geometry.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism, and molecular architectures (Billson et al., 2000; Fritsky et al., 2003; Kotera et al., 2003). As an extension of work on the structural characterization of cobalt(II) compounds, the crystal structure of the title compound, (I), is reported here.

(I)

Compound (I) is a mononuclear $\mathrm{Co}^{\text {II }}$ complex (Fig. 1). The $\mathrm{Co}^{\mathrm{II}}$ ion is six-coordinated in an octahedral geometry by four O atoms from two 5-chlorosalicylaldehyde ligands defining the equatorial plane and by two O atoms from two coordinated water molecules occupying the axial positions. The three trans angles at the $\mathrm{Co}^{\mathrm{II}}$ centre are close to 180°. All other angles subtended at the $\mathrm{Co}^{\mathrm{II}}$ atom are close to 90°, ranging from 84.78 (8) to $95.96(8)^{\circ}$ (Table 1), which indicates a slightly distorted octahedral geometry of atom Co 1 . The $\mathrm{Co}-\mathrm{O}$ bond lengths lie in the range 2.0274 (18) -2.110 (2) \AA. In the crystal structure, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link the molecules into a sheet parallel to the $b c$ plane (Fig. 2).

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

Received 12 December 2005 Accepted 20 December 2005 Online 7 January 2006

Figure 2
The crystal packing of (I), viewed along the b axis. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Experimental

5-Chlorosalicylaldehyde ($0.1 \mathrm{mmol}, 15.7 \mathrm{mg}$) and cyclohexylamine ($0.1 \mathrm{mmol}, 9.3 \mathrm{mg}$) were dissolved in methanol $(10 \mathrm{ml})$. Almost immediately, $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 24.9 \mathrm{mg})$ was added to the solution. The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the solution to stand in air for 11 d , brown block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 54\%). Analysis found: C 41.4, H 3.0\%; calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{CoO}_{6}: \mathrm{C} 4.13$, H 3.1%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=406.07$
Monoclinic, $P 2_{1} / c$
$a=15.4115$ (17) \AA
$b=7.4744(8) \AA$
$c=14.7332(16) \AA$
$\beta=116.703(2)^{\circ}$
$V=1516.1(3) \AA^{3}$
$Z=4$

Data collection

[^0]\[

$$
\begin{aligned}
& D_{x}=1.779 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1679 \\
& \quad \text { reflections } \\
& \theta=2.6-24.9^{\circ} \\
& \mu=1.51 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, brown } \\
& 0.11 \times 0.09 \times 0.04 \mathrm{~mm}
\end{aligned}
$$
\]

3149 independent reflections
2177 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-19 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0432 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0274(18)$	$\mathrm{Co} 1-\mathrm{O} 4$	$2.0716(19)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.0287(18)$	$\mathrm{Co} 1-\mathrm{O} 2$	$2.0721(19)$
$\mathrm{Co} 1-\mathrm{O} 6$	$2.053(2)$	$\mathrm{Co} 1-\mathrm{O} 5$	$2.110(2)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$	$176.38(7)$	$\mathrm{O} 6-\mathrm{Co} 1-\mathrm{O} 2$	$84.78(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 6$	$90.66(8)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 2$	$177.84(7)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 6$	$92.95(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 5$	$89.17(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4$	$89.18(8)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 5$	$87.23(8)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$	$90.92(8)$	$\mathrm{O} 6-\mathrm{Co} 1-\mathrm{O} 5$	$179.24(9)$
$\mathrm{O} 6-\mathrm{Co} 1-\mathrm{O} 4$	$93.08(8)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 5$	$86.18(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$91.11(7)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 5$	$95.96(8)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 2$	$88.92(8)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {i }}$	0.82 (3)	2.10 (3)	2.912 (3)	172 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.82 (3)	2.04 (3)	2.860 (3)	178 (3)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 3^{\text {iii }}$	0.83 (3)	1.97 (3)	2.798 (3)	178 (3)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iv }}$	0.83 (3)	1.92 (3)	2.750 (3)	177 (2)

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y,-z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

The C-bound H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in a difference Fourier map and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.84$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.37$ (2) Å.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

This work is supported by the Natural Science Foundation of Shaanxi Province (grant No. 2002B12).

References

Billson, T. S., Crane, J. D., Fox, O. D. \& Heath, S. L. (2000). Inorg. Chem. Coттй. 3, 718-720.
Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fritsky, I. O., Ott, R., Pritzkow, H. \& Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.
Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. \& Handa, M. (2003). Inorg. Chem. Commun. 6, 322-324.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Bruker APEX area-detector diffractometer
 φ and ω scans
 Absorption correction: multi-scan
 (SADABS; Bruker, 2002)
 $T_{\text {min }}=0.851, T_{\text {max }}=0.942$
 11886 measured reflections

