metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fei Nie

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail: nie-fei@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.099 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(5-chloro-2-formylphenolato- $\kappa^2 O, O'$)- cobalt(II)

In the mononuclear title compound, $[Co(C_7H_4ClO_2)_2(H_2O)_2]$, the Co^{II} atom is six-coordinated by four O atoms from two 5-chlorosalicylaldehyde ligands and two O atoms from two coordinated water molecules in a slightly distorted octahedral geometry.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism, and molecular architectures (Billson *et al.*, 2000; Fritsky *et al.*, 2003; Kotera *et al.*, 2003). As an extension of work on the structural characterization of cobalt(II) compounds, the crystal structure of the title compound, (I), is reported here.

Compound (I) is a mononuclear Co^{II} complex (Fig. 1). The Co^{II} ion is six-coordinated in an octahedral geometry by four O atoms from two 5-chlorosalicylaldehyde ligands defining the equatorial plane and by two O atoms from two coordinated water molecules occupying the axial positions. The three *trans* angles at the Co^{II} centre are close to 180° . All other angles subtended at the Co^{II} atom are close to 90° , ranging from 84.78 (8) to 95.96 (8)° (Table 1), which indicates a slightly distorted octahedral geometry of atom Co1. The Co–O bond lengths lie in the range 2.0274 (18)–2.110 (2) Å. In the crystal structure, $O-\text{H}\cdots O$ hydrogen bonds (Table 2) link the molecules into a sheet parallel to the *bc* plane (Fig. 2).

Figure 1 The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

© 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved

Received 12 December 2005 Accepted 20 December 2005 Online 7 January 2006

Figure 2

The crystal packing of (I), viewed along the b axis. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg) and cyclohexylamine (0.1 mmol, 9.3 mg) were dissolved in methanol (10 ml). Almost immediately, $Co(CH_3COO)_2 \cdot 4H_2O$ (0.1 mmol, 24.9 mg) was added to the solution. The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the solution to stand in air for 11 d, brown block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 54%). Analysis found: C 41.4, H 3.0%; calculated for $C_{14}H_{12}Cl_2CoO_6$; C 4.13, H 3.1%.

Crystal data

$\begin{bmatrix} Co(C_7H_4CIO_2)_2(H_2O)_2 \end{bmatrix}$	$D_x = 1.779 \text{ Mg m}^{-3}$
$M_r = 406.07$	Mo K\alpha radiation
Monoclinic, $P2_1/c$	Cell parameters from 1679
a = 15.4115 (17) Å	reflections
b = 7.4744 (8) Å	$\theta = 2.6-24.9^{\circ}$
c = 14.7332 (16) Å	$\mu = 1.51 \text{ mm}^{-1}$
$\beta = 116.703$ (2)°	T = 295 (2) K
V = 1516.1 (3) Å ³	Block, brown
Z = 4	$0.11 \times 0.09 \times 0.04 \text{ mm}$
Bruker APEX area-detector	3149 independent reflections
diffractometer	2177 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{int} = 0.043$
Absorption correction: multi-scan	$\theta_{max} = 26.5^{\circ}$
(<i>SADABS</i> ; Bruker, 2002)	$h = -19 \rightarrow 19$
$T_{min} = 0.851, T_{max} = 0.942$	$k = -9 \rightarrow 9$
11886 measured reflections	$l = -18 \rightarrow 18$

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.039$	independent and constrained
$wR(F^2) = 0.099$	refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2]$
3149 reflections	where $P = (F_0^2 + 2F_c^2)/3$
224 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

 Table 1

 Selected geometric parameters (Å, $^{\circ}$).

Co1-O1	2.0274 (18)	Co1-O4	2.0716 (19)
Co1-O3	2.0287 (18)	Co1-O2	2.0721 (19)
Co1-O6	2.053 (2)	Co1-O5	2.110 (2)
			/->
O1-Co1-O3	176.38 (7)	O6-Co1-O2	84.78 (8)
O1-Co1-O6	90.66 (8)	O4-Co1-O2	177.84 (7)
O3-Co1-O6	92.95 (8)	O1-Co1-O5	89.17 (8)
O1-Co1-O4	89.18 (8)	O3-Co1-O5	87.23 (8)
O3-Co1-O4	90.92 (8)	O6-Co1-O5	179.24 (9)
O6-Co1-O4	93.08 (8)	O4-Co1-O5	86.18 (8)
O1-Co1-O2	91.11 (7)	O2-Co1-O5	95.96 (8)
O3-Co1-O2	88.92 (8)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O5-H5A\cdotsO1^{i}$	0.82(3)	2.10 (3)	2.912 (3)	172 (3)
$O5-H5B\cdotsO3^{ii}$	0.82(3)	2.04 (3)	2.860 (3)	178 (3)
$\begin{array}{c} O6 - H6A \cdots O3^{iii} \\ O6 - H6B \cdots O1^{iv} \end{array}$	0.83 (3)	1.97 (3)	2.798 (3)	178 (3)
	0.83 (3)	1.92 (3)	2.750 (3)	177 (2)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

The C-bound H atoms were placed in idealized positions (C–H = 0.93 Å) and allowed to ride on their parent atoms, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The water H atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84 (1) Å and H…H = 1.37 (2) Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

This work is supported by the Natural Science Foundation of Shaanxi Province (grant No. 2002B12).

References

- Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.
- Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. & Handa, M. (2003). Inorg. Chem. Commun. 6, 322–324.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.